o
    Rŀg;                     @   s  U d Z ddlmZ ddlmZ ddlmZ ddlmZ ddlm	Z	 ddlm
Z
 ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlm Z  i de	j!de	j"de
j#d ej$d!ej%d"ej&d#ej'd$ej(d%ej)d&ej*d'ej)d(ej+d)ej,d*ej-d+ej.d,ej/d-ej0i d.ej1d/ej2d0ej3d1ej4d2ej5d3ej6d4ej6d5ej7d6ej8d7ej9d8ej:d9ej;d:ej<d;ej=d<ej>d=ej?d>ej@ejAejBd?ZCejDejEejFejGejGejHejIejJd@ZKeLeMeegeMf f eNdA< i d ejOd!ejPd%ejQd'ejQd#ejRd+ejSd,ejTd1ejUd2ejVd3ejWd4ejWd5ejXd6ejYd7ejZd8ej[d9ej\d=ej]dBej^iZ_dCeee ef dDe dEeMdFe`fdGdHZadjdJdKZbdjdLdMZcdjdNdOZddkdPdQZe	IdldRdSZfi dTejgdUejgdVejhdWejidXejidYejidZejid[ejjd\ejjd]ejjd^ejjd_ejkd`ejkdaejldbejmdcejkddejkejlejmejnejnejoejpejqejqejrejsejtejtejuejvdeZwdjdfdgZxeydhkrDddilzm{Z{ e{  dIS dIS )ma"7  Sequence input/output as SeqRecord objects.

Bio.SeqIO is also documented at SeqIO_ and by a whole chapter in our tutorial:

  - `HTML Tutorial`_
  - `PDF Tutorial`_

.. _SeqIO: http://biopython.org/wiki/SeqIO
.. _`HTML Tutorial`: http://biopython.org/DIST/docs/tutorial/Tutorial.html
.. _`PDF Tutorial`: http://biopython.org/DIST/docs/tutorial/Tutorial.pdf

Input
-----
The main function is Bio.SeqIO.parse(...) which takes an input file handle
(or in recent versions of Biopython alternatively a filename as a string),
and format string.  This returns an iterator giving SeqRecord objects:

>>> from Bio import SeqIO
>>> for record in SeqIO.parse("Fasta/f002", "fasta"):
...     print("%s %i" % (record.id, len(record)))
gi|1348912|gb|G26680|G26680 633
gi|1348917|gb|G26685|G26685 413
gi|1592936|gb|G29385|G29385 471

Note that the parse() function will invoke the relevant parser for the
format with its default settings.  You may want more control, in which case
you need to create a format specific sequence iterator directly.

Some of these parsers are wrappers around low-level parsers which build up
SeqRecord objects for the consistent SeqIO interface. In cases where the
run-time is critical, such as large FASTA or FASTQ files, calling these
underlying parsers will be much faster - in this case these generator
functions which return tuples of strings:

>>> from Bio.SeqIO.FastaIO import SimpleFastaParser
>>> from Bio.SeqIO.QualityIO import FastqGeneralIterator


Input - Single Records
----------------------
If you expect your file to contain one-and-only-one record, then we provide
the following 'helper' function which will return a single SeqRecord, or
raise an exception if there are no records or more than one record:

>>> from Bio import SeqIO
>>> record = SeqIO.read("Fasta/f001", "fasta")
>>> print("%s %i" % (record.id, len(record)))
gi|3318709|pdb|1A91| 79

This style is useful when you expect a single record only (and would
consider multiple records an error).  For example, when dealing with GenBank
files for bacterial genomes or chromosomes, there is normally only a single
record.  Alternatively, use this with a handle when downloading a single
record from the internet.

However, if you just want the first record from a file containing multiple
record, use the next() function on the iterator:

>>> from Bio import SeqIO
>>> record = next(SeqIO.parse("Fasta/f002", "fasta"))
>>> print("%s %i" % (record.id, len(record)))
gi|1348912|gb|G26680|G26680 633

The above code will work as long as the file contains at least one record.
Note that if there is more than one record, the remaining records will be
silently ignored.


Input - Multiple Records
------------------------
For non-interlaced files (e.g. Fasta, GenBank, EMBL) with multiple records
using a sequence iterator can save you a lot of memory (RAM).  There is
less benefit for interlaced file formats (e.g. most multiple alignment file
formats).  However, an iterator only lets you access the records one by one.

If you want random access to the records by number, turn this into a list:

>>> from Bio import SeqIO
>>> records = list(SeqIO.parse("Fasta/f002", "fasta"))
>>> len(records)
3
>>> print(records[1].id)
gi|1348917|gb|G26685|G26685

If you want random access to the records by a key such as the record id,
turn the iterator into a dictionary:

>>> from Bio import SeqIO
>>> record_dict = SeqIO.to_dict(SeqIO.parse("Fasta/f002", "fasta"))
>>> len(record_dict)
3
>>> print(len(record_dict["gi|1348917|gb|G26685|G26685"]))
413

However, using list() or the to_dict() function will load all the records
into memory at once, and therefore is not possible on very large files.
Instead, for *some* file formats Bio.SeqIO provides an indexing approach
providing dictionary like access to any record. For example,

>>> from Bio import SeqIO
>>> record_dict = SeqIO.index("Fasta/f002", "fasta")
>>> len(record_dict)
3
>>> print(len(record_dict["gi|1348917|gb|G26685|G26685"]))
413
>>> record_dict.close()

Many but not all of the supported input file formats can be indexed like
this. For example "fasta", "fastq", "qual" and even the binary format "sff"
work, but alignment formats like "phylip", "clustalw" and "nexus" will not.

In most cases you can also use SeqIO.index to get the record from the file
as a raw string (not a SeqRecord). This can be useful for example to extract
a sub-set of records from a file where SeqIO cannot output the file format
(e.g. the plain text SwissProt format, "swiss") or where it is important to
keep the output 100% identical to the input). For example,

>>> from Bio import SeqIO
>>> record_dict = SeqIO.index("Fasta/f002", "fasta")
>>> len(record_dict)
3
>>> print(record_dict.get_raw("gi|1348917|gb|G26685|G26685").decode())
>gi|1348917|gb|G26685|G26685 human STS STS_D11734.
CGGAGCCAGCGAGCATATGCTGCATGAGGACCTTTCTATCTTACATTATGGCTGGGAATCTTACTCTTTC
ATCTGATACCTTGTTCAGATTTCAAAATAGTTGTAGCCTTATCCTGGTTTTACAGATGTGAAACTTTCAA
GAGATTTACTGACTTTCCTAGAATAGTTTCTCTACTGGAAACCTGATGCTTTTATAAGCCATTGTGATTA
GGATGACTGTTACAGGCTTAGCTTTGTGTGAAANCCAGTCACCTTTCTCCTAGGTAATGAGTAGTGCTGT
TCATATTACTNTAAGTTCTATAGCATACTTGCNATCCTTTANCCATGCTTATCATANGTACCATTTGAGG
AATTGNTTTGCCCTTTTGGGTTTNTTNTTGGTAAANNNTTCCCGGGTGGGGGNGGTNNNGAAA
<BLANKLINE>
>>> print(record_dict["gi|1348917|gb|G26685|G26685"].format("fasta"))
>gi|1348917|gb|G26685|G26685 human STS STS_D11734.
CGGAGCCAGCGAGCATATGCTGCATGAGGACCTTTCTATCTTACATTATGGCTGGGAATC
TTACTCTTTCATCTGATACCTTGTTCAGATTTCAAAATAGTTGTAGCCTTATCCTGGTTT
TACAGATGTGAAACTTTCAAGAGATTTACTGACTTTCCTAGAATAGTTTCTCTACTGGAA
ACCTGATGCTTTTATAAGCCATTGTGATTAGGATGACTGTTACAGGCTTAGCTTTGTGTG
AAANCCAGTCACCTTTCTCCTAGGTAATGAGTAGTGCTGTTCATATTACTNTAAGTTCTA
TAGCATACTTGCNATCCTTTANCCATGCTTATCATANGTACCATTTGAGGAATTGNTTTG
CCCTTTTGGGTTTNTTNTTGGTAAANNNTTCCCGGGTGGGGGNGGTNNNGAAA
<BLANKLINE>
>>> record_dict.close()

Here the original file and what Biopython would output differ in the line
wrapping. Also note that the get_raw method will return a bytes object,
hence the use of decode to turn it into a string.

Also note that the get_raw method will preserve the newline endings. This
example FASTQ file uses Unix style endings (b"\n" only),

>>> from Bio import SeqIO
>>> fastq_dict = SeqIO.index("Quality/example.fastq", "fastq")
>>> len(fastq_dict)
3
>>> raw = fastq_dict.get_raw("EAS54_6_R1_2_1_540_792")
>>> raw.count(b"\n")
4
>>> raw.count(b"\r\n")
0
>>> b"\r" in raw
False
>>> len(raw)
78
>>> fastq_dict.close()

Here is the same file but using DOS/Windows new lines (b"\r\n" instead),

>>> from Bio import SeqIO
>>> fastq_dict = SeqIO.index("Quality/example_dos.fastq", "fastq")
>>> len(fastq_dict)
3
>>> raw = fastq_dict.get_raw("EAS54_6_R1_2_1_540_792")
>>> raw.count(b"\n")
4
>>> raw.count(b"\r\n")
4
>>> b"\r\n" in raw
True
>>> len(raw)
82
>>> fastq_dict.close()

Because this uses two bytes for each new line, the file is longer than
the Unix equivalent with only one byte.


Input - Alignments
------------------
You can read in alignment files as alignment objects using Bio.AlignIO.
Alternatively, reading in an alignment file format via Bio.SeqIO will give
you a SeqRecord for each row of each alignment:

>>> from Bio import SeqIO
>>> for record in SeqIO.parse("Clustalw/hedgehog.aln", "clustal"):
...     print("%s %i" % (record.id, len(record)))
gi|167877390|gb|EDS40773.1| 447
gi|167234445|ref|NP_001107837. 447
gi|74100009|gb|AAZ99217.1| 447
gi|13990994|dbj|BAA33523.2| 447
gi|56122354|gb|AAV74328.1| 447


Output
------
Use the function Bio.SeqIO.write(...), which takes a complete set of
SeqRecord objects (either as a list, or an iterator), an output file handle
(or in recent versions of Biopython an output filename as a string) and of
course the file format::

  from Bio import SeqIO
  records = ...
  SeqIO.write(records, "example.faa", "fasta")

Or, using a handle::

    from Bio import SeqIO
    records = ...
    with open("example.faa", "w") as handle:
      SeqIO.write(records, handle, "fasta")

You are expected to call this function once (with all your records) and if
using a handle, make sure you close it to flush the data to the hard disk.


Output - Advanced
-----------------
The effect of calling write() multiple times on a single file will vary
depending on the file format, and is best avoided unless you have a strong
reason to do so.

If you give a filename, then each time you call write() the existing file
will be overwritten. For sequential files formats (e.g. fasta, genbank) each
"record block" holds a single sequence.  For these files it would probably
be safe to call write() multiple times by re-using the same handle.

However, trying this for certain alignment formats (e.g. phylip, clustal,
stockholm) would have the effect of concatenating several multiple sequence
alignments together.  Such files are created by the PHYLIP suite of programs
for bootstrap analysis, but it is clearer to do this via Bio.AlignIO instead.

Worse, many fileformats have an explicit header and/or footer structure
(e.g. any XMl format, and most binary file formats like SFF). Here making
multiple calls to write() will result in an invalid file.


Conversion
----------
The Bio.SeqIO.convert(...) function allows an easy interface for simple
file format conversions. Additionally, it may use file format specific
optimisations so this should be the fastest way too.

In general however, you can combine the Bio.SeqIO.parse(...) function with
the Bio.SeqIO.write(...) function for sequence file conversion. Using
generator expressions or generator functions provides a memory efficient way
to perform filtering or other extra operations as part of the process.


File Formats
------------
When specifying the file format, use lowercase strings.  The same format
names are also used in Bio.AlignIO and include the following:

    - abi     - Applied Biosystem's sequencing trace format
    - abi-trim - Same as "abi" but with quality trimming with Mott's algorithm
    - ace     - Reads the contig sequences from an ACE assembly file.
    - cif-atom - Uses Bio.PDB.MMCIFParser to determine the (partial) protein
      sequence as it appears in the structure based on the atomic coordinates.
    - cif-seqres - Reads a macromolecular Crystallographic Information File
      (mmCIF) file to determine the complete protein sequence as defined by the
      _pdbx_poly_seq_scheme records.
    - embl    - The EMBL flat file format. Uses Bio.GenBank internally.
    - fasta   - The generic sequence file format where each record starts with
      an identifier line starting with a ">" character, followed by
      lines of sequence.
    - fasta-2line - Stricter interpretation of the FASTA format using exactly
      two lines per record (no line wrapping).
    - fastq   - A "FASTA like" format used by Sanger which also stores PHRED
      sequence quality values (with an ASCII offset of 33).
    - fastq-sanger - An alias for "fastq" for consistency with BioPerl and EMBOSS
    - fastq-solexa - Original Solexa/Illumnia variant of the FASTQ format which
      encodes Solexa quality scores (not PHRED quality scores) with an
      ASCII offset of 64.
    - fastq-illumina - Solexa/Illumina 1.3 to 1.7 variant of the FASTQ format
      which encodes PHRED quality scores with an ASCII offset of 64
      (not 33). Note as of version 1.8 of the CASAVA pipeline Illumina
      will produce FASTQ files using the standard Sanger encoding.
    - gck     - Gene Construction Kit's format.
    - genbank - The GenBank or GenPept flat file format.
    - gb      - An alias for "genbank", for consistency with NCBI Entrez Utilities
    - gfa1     - Graphical Fragment Assemblyv versions 1.x. Only segment lines
      are parsed and all linkage information is ignored.
    - gfa2    - Graphical Fragment Assembly version 2.0. Only segment lines are
      parsed and all linkage information is ignored.
    - ig      - The IntelliGenetics file format, apparently the same as the
      MASE alignment format.
    - imgt    - An EMBL like format from IMGT where the feature tables are more
      indented to allow for longer feature types.
    - nib     - UCSC's nib file format for nucleotide sequences, which uses one
      nibble (4 bits) to represent each nucleotide, and stores two nucleotides in
      one byte.
    - pdb-seqres -  Reads a Protein Data Bank (PDB) file to determine the
      complete protein sequence as it appears in the header (no dependencies).
    - pdb-atom - Uses Bio.PDB to determine the (partial) protein sequence as
      it appears in the structure based on the atom coordinate section of the
      file (requires NumPy for Bio.PDB).
    - phd     - Output from PHRED, used by PHRAP and CONSED for input.
    - pir     - A "FASTA like" format introduced by the National Biomedical
      Research Foundation (NBRF) for the Protein Information Resource
      (PIR) database, now part of UniProt.
    - seqxml  - SeqXML, simple XML format described in Schmitt et al (2011).
    - sff     - Standard Flowgram Format (SFF), typical output from Roche 454.
    - sff-trim - Standard Flowgram Format (SFF) with given trimming applied.
    - snapgene - SnapGene's native format.
    - swiss   - Plain text Swiss-Prot aka UniProt format.
    - tab     - Simple two column tab separated sequence files, where each
      line holds a record's identifier and sequence. For example,
      this is used as by Aligent's eArray software when saving
      microarray probes in a minimal tab delimited text file.
    - qual    - A "FASTA like" format holding PHRED quality values from
      sequencing DNA, but no actual sequences (usually provided
      in separate FASTA files).
    - uniprot-xml - The UniProt XML format (replacement for the SwissProt plain
      text format which we call "swiss")
    - xdna        - DNA Strider's and SerialCloner's native format.

Note that while Bio.SeqIO can read all the above file formats, it cannot
write to all of them.

You can also use any file format supported by Bio.AlignIO, such as "nexus",
"phylip" and "stockholm", which gives you access to the individual sequences
making up each alignment as SeqRecords.
    )Callable)Iterable)Union)	as_handle)AbiIO)AceIO)FastaIO)GckIO)GfaIO)IgIO)InsdcIO)NibIO)PdbIO)PhdIO)PirIO)	QualityIO)SeqXmlIO)SffIO)
SnapGeneIO)SwissIO)TabIO)TwoBitIO)	UniprotIO)XdnaIO)	SeqRecord   )_TextIOSourceabizabi-trimacefastafasta-2lineigemblzembl-cdsgbgckgenbankzgenbank-cdsgfa1gfa2imgtnibz
cif-seqreszcif-atomzpdb-atomz
pdb-seqresphdpirfastqfastq-sangerfastq-solexafastq-illuminaqualseqxmlsffsnapgenezsff-trimswisstabtwobit)zuniprot-xmlxdna)r   r    r5   r,   r-   r.   r/   r0   _FormatToStringr7   	sequenceshandleformatreturnc                 C   s  ddl m} t|tstd|std| s!td| dt|tr*tdt|tr3tdt| tr;| g} t	
|}|d	urnd}t|d
}| D ]}||| |d7 }qNW d	   |S 1 sgw   Y  |S t
|}|d	ur||| }t|tstd||f |S ||jv rddlm}	 |	| }
||
g||}|dkrtd| t|
}|S |tv s||jv rtd| dtd| d)a  Write complete set of sequences to a file.

    Arguments:
     - sequences - A list (or iterator) of SeqRecord objects, or a single
       SeqRecord.
     - handle    - File handle object to write to, or filename as string.
     - format    - lower case string describing the file format to write.

    Note if providing a file handle, your code should close the handle
    after calling this function (to ensure the data gets flushed to disk).

    Returns the number of records written (as an integer).
    r   AlignIO.Need a string for the file format (lower case)#Format required (lower case string)Format string '' should be lower casez1Check arguments, handle should NOT be a SeqRecordz,Check arguments, handle should NOT be a listNwr   zWInternal error - the underlying %s writer should have returned the record count, not %r)MultipleSeqAlignmentzEInternal error - the underlying writer should have returned 1, not %rzReading format 'z' is supported, but not writingUnknown format '')Bior>   
isinstancestr	TypeError
ValueErrorislowerr   listr8   getr   write_FormatToWriter
write_fileintRuntimeError	Bio.AlignrD   len_FormatToIterator)r9   r:   r;   r>   format_functioncountfprecordwriter_classrD   	alignmentalignment_count r^   F/var/www/html/myenv/lib/python3.10/site-packages/Bio/SeqIO/__init__.pyrO     sd   









rO   Nc                 C   s   ddl m} t|tstd|std| s!td| d|dur)tdt|}|r4|| S ||jv rDd	d
 |	| |D S td| d)a@  Turn a sequence file into an iterator returning SeqRecords.

    Arguments:
     - handle   - handle to the file, or the filename as a string
       (note older versions of Biopython only took a handle).
     - format   - lower case string describing the file format.
     - alphabet - no longer used, should be None.

    Typical usage, opening a file to read in, and looping over the record(s):

    >>> from Bio import SeqIO
    >>> filename = "Fasta/sweetpea.nu"
    >>> for record in SeqIO.parse(filename, "fasta"):
    ...    print("ID %s" % record.id)
    ...    print("Sequence length %i" % len(record))
    ID gi|3176602|gb|U78617.1|LOU78617
    Sequence length 309

    For lazy-loading file formats such as twobit, for which the file contents
    is read on demand only, ensure that the file remains open while extracting
    sequence data.

    If you have a string 'data' containing the file contents, you must
    first turn this into a handle in order to parse it:

    >>> data = ">Alpha\nACCGGATGTA\n>Beta\nAGGCTCGGTTA\n"
    >>> from Bio import SeqIO
    >>> from io import StringIO
    >>> for record in SeqIO.parse(StringIO(data), "fasta"):
    ...     print("%s %s" % (record.id, record.seq))
    Alpha ACCGGATGTA
    Beta AGGCTCGGTTA

    Use the Bio.SeqIO.read(...) function when you expect a single record
    only.
    r   r=   r?   r@   rA   rB   N,The alphabet argument is no longer supportedc                 s   s    | ]
}|D ]}|V  qqd S Nr^   ).0r\   rr^   r^   r_   	<genexpr>t  s    zparse.<locals>.<genexpr>rE   rF   )
rG   r>   rH   rI   rJ   rK   rL   rV   rN   parse)r:   r;   alphabetr>   iterator_generatorr^   r^   r_   re   ;  s   (


re   c                 C   sX   t | ||}zt|}W n ty   tddw zt| td ty+   Y |S w )a  Turn a sequence file into a single SeqRecord.

    Arguments:
     - handle   - handle to the file, or the filename as a string
       (note older versions of Biopython only took a handle).
     - format   - string describing the file format.
     - alphabet - no longer used, should be None.

    This function is for use parsing sequence files containing
    exactly one record.  For example, reading a GenBank file:

    >>> from Bio import SeqIO
    >>> record = SeqIO.read("GenBank/arab1.gb", "genbank")
    >>> print("ID %s" % record.id)
    ID AC007323.5
    >>> print("Sequence length %i" % len(record))
    Sequence length 86436

    If the handle contains no records, or more than one record,
    an exception is raised.  For example:

    >>> from Bio import SeqIO
    >>> record = SeqIO.read("GenBank/cor6_6.gb", "genbank")
    Traceback (most recent call last):
        ...
    ValueError: More than one record found in handle

    If however you want the first record from a file containing
    multiple records this function would raise an exception (as
    shown in the example above).  Instead use:

    >>> from Bio import SeqIO
    >>> record = next(SeqIO.parse("GenBank/cor6_6.gb", "genbank"))
    >>> print("First record's ID %s" % record.id)
    First record's ID X55053.1

    Use the Bio.SeqIO.parse(handle, format) function if you want
    to read multiple records from the handle.
    zNo records found in handleNz$More than one record found in handle)re   nextStopIterationrK   )r:   r;   rf   iteratorrZ   r^   r^   r_   readx  s   (
rk   c                 C   sN   dd }|du r
|}i }| D ]}||}||v r t d| d|||< q|S )aZ	  Turn a sequence iterator or list into a dictionary.

    Arguments:
     - sequences  - An iterator that returns SeqRecord objects,
       or simply a list of SeqRecord objects.
     - key_function - Optional callback function which when given a
       SeqRecord should return a unique key for the dictionary.

    e.g. key_function = lambda rec : rec.name
    or,  key_function = lambda rec : rec.description.split()[0]

    If key_function is omitted then record.id is used, on the assumption
    that the records objects returned are SeqRecords with a unique id.

    If there are duplicate keys, an error is raised.

    Since Python 3.7, the default dict class maintains key order, meaning
    this dictionary will reflect the order of records given to it. For
    CPython and PyPy, this was already implemented for Python 3.6, so
    effectively you can always assume the record order is preserved.

    Example usage, defaulting to using the record.id as key:

    >>> from Bio import SeqIO
    >>> filename = "GenBank/cor6_6.gb"
    >>> format = "genbank"
    >>> id_dict = SeqIO.to_dict(SeqIO.parse(filename, format))
    >>> print(list(id_dict))
    ['X55053.1', 'X62281.1', 'M81224.1', 'AJ237582.1', 'L31939.1', 'AF297471.1']
    >>> print(id_dict["L31939.1"].description)
    Brassica rapa (clone bif72) kin mRNA, complete cds

    A more complex example, using the key_function argument in order to
    use a sequence checksum as the dictionary key:

    >>> from Bio import SeqIO
    >>> from Bio.SeqUtils.CheckSum import seguid
    >>> filename = "GenBank/cor6_6.gb"
    >>> format = "genbank"
    >>> seguid_dict = SeqIO.to_dict(SeqIO.parse(filename, format),
    ...               key_function = lambda rec : seguid(rec.seq))
    >>> for key, record in sorted(seguid_dict.items()):
    ...     print("%s %s" % (key, record.id))
    /wQvmrl87QWcm9llO4/efg23Vgg AJ237582.1
    BUg6YxXSKWEcFFH0L08JzaLGhQs L31939.1
    SabZaA4V2eLE9/2Fm5FnyYy07J4 X55053.1
    TtWsXo45S3ZclIBy4X/WJc39+CY M81224.1
    l7gjJFE6W/S1jJn5+1ASrUKW/FA X62281.1
    uVEYeAQSV5EDQOnFoeMmVea+Oow AF297471.1

    This approach is not suitable for very large sets of sequences, as all
    the SeqRecord objects are held in memory. Instead, consider using the
    Bio.SeqIO.index() function (if it supports your particular file format).

    This dictionary will reflect the order of records given to it.
    c                 S   s   | j S ra   )id)recr^   r^   r_   _default_key_function  s   z&to_dict.<locals>._default_key_functionNzDuplicate key 'rF   )rK   )r9   key_functionrn   drZ   keyr^   r^   r_   to_dict  s   ;
rr   c           	      C   s   t |ts	td|std| std| d|dur#tdddlm} d	d
lm} z|| }W n t	yD   td|dw d| |||f }z|| |}W n ty`   tddw ||||dS )a  Indexes a sequence file and returns a dictionary like object.

    Arguments:
     - filename - string giving name of file to be indexed
     - format   - lower case string describing the file format
     - alphabet - no longer used, leave as None
     - key_function - Optional callback function which when given a
       SeqRecord identifier string should return a unique key for the
       dictionary.

    This indexing function will return a dictionary like object, giving the
    SeqRecord objects as values.

    As of Biopython 1.69, this will preserve the ordering of the records in
    file when iterating over the entries.

    >>> from Bio import SeqIO
    >>> records = SeqIO.index("Quality/example.fastq", "fastq")
    >>> len(records)
    3
    >>> list(records)  # make a list of the keys
    ['EAS54_6_R1_2_1_413_324', 'EAS54_6_R1_2_1_540_792', 'EAS54_6_R1_2_1_443_348']
    >>> print(records["EAS54_6_R1_2_1_540_792"].format("fasta"))
    >EAS54_6_R1_2_1_540_792
    TTGGCAGGCCAAGGCCGATGGATCA
    <BLANKLINE>
    >>> "EAS54_6_R1_2_1_540_792" in records
    True
    >>> print(records.get("Missing", None))
    None
    >>> records.close()

    If the file is BGZF compressed, this is detected automatically. Ordinary
    GZIP files are not supported:

    >>> from Bio import SeqIO
    >>> records = SeqIO.index("Quality/example.fastq.bgz", "fastq")
    >>> len(records)
    3
    >>> print(records["EAS54_6_R1_2_1_540_792"].seq)
    TTGGCAGGCCAAGGCCGATGGATCA
    >>> records.close()

    When you call the index function, it will scan through the file, noting
    the location of each record. When you access a particular record via the
    dictionary methods, the code will jump to the appropriate part of the
    file and then parse that section into a SeqRecord.

    Note that not all the input formats supported by Bio.SeqIO can be used
    with this index function. It is designed to work only with sequential
    file formats (e.g. "fasta", "gb", "fastq") and is not suitable for any
    interlaced file format (e.g. alignment formats such as "clustal").

    For small files, it may be more efficient to use an in memory Python
    dictionary, e.g.

    >>> from Bio import SeqIO
    >>> records = SeqIO.to_dict(SeqIO.parse("Quality/example.fastq", "fastq"))
    >>> len(records)
    3
    >>> list(records)  # make a list of the keys
    ['EAS54_6_R1_2_1_413_324', 'EAS54_6_R1_2_1_540_792', 'EAS54_6_R1_2_1_443_348']
    >>> print(records["EAS54_6_R1_2_1_540_792"].format("fasta"))
    >EAS54_6_R1_2_1_540_792
    TTGGCAGGCCAAGGCCGATGGATCA
    <BLANKLINE>

    As with the to_dict() function, by default the id string of each record
    is used as the key. You can specify a callback function to transform
    this (the record identifier string) into your preferred key. For example:

    >>> from Bio import SeqIO
    >>> def make_tuple(identifier):
    ...     parts = identifier.split("_")
    ...     return int(parts[-2]), int(parts[-1])
    >>> records = SeqIO.index("Quality/example.fastq", "fastq",
    ...                       key_function=make_tuple)
    >>> len(records)
    3
    >>> list(records)  # make a list of the keys
    [(413, 324), (540, 792), (443, 348)]
    >>> print(records[(540, 792)].format("fasta"))
    >EAS54_6_R1_2_1_540_792
    TTGGCAGGCCAAGGCCGATGGATCA
    <BLANKLINE>
    >>> (540, 792) in records
    True
    >>> "EAS54_6_R1_2_1_540_792" in records
    False
    >>> print(records.get("Missing", None))
    None
    >>> records.close()

    Another common use case would be indexing an NCBI style FASTA file,
    where you might want to extract the GI number from the FASTA identifier
    to use as the dictionary key.

    Notice that unlike the to_dict() function, here the key_function does
    not get given the full SeqRecord to use to generate the key. Doing so
    would impose a severe performance penalty as it would require the file
    to be completely parsed while building the index. Right now this is
    usually avoided.

    See Also: Bio.SeqIO.index_db() and Bio.SeqIO.to_dict()

    r?   r@   rA   rB   Nr`   r   )_IndexedSeqFileDictr   _FormatToRandomAccesszUnsupported format z1SeqIO.index(%r, %r, alphabet=%r, key_function=%r)zANeed a string or path-like object for the filename (not a handle)r   )
rH   rI   rJ   rK   rL   Bio.Filers   _indexru   KeyError)	filenamer;   rf   ro   rs   ru   proxy_classreprrandom_access_proxyr^   r^   r_   index  s>   
lr}   c           	         s   ddl m fdd}|| std||r|g}|dur(t|ts(td|dur5t|ts5td|rC| sCtd	| d
|durKtdddlm	} ddl
m  d| |||f }d fdd	}|| |||||S )a  Index several sequence files and return a dictionary like object.

    The index is stored in an SQLite database rather than in memory (as in the
    Bio.SeqIO.index(...) function).

    Arguments:
     - index_filename - Where to store the SQLite index
     - filenames - list of strings specifying file(s) to be indexed, or when
       indexing a single file this can be given as a string.
       (optional if reloading an existing index, but must match)
     - format   - lower case string describing the file format
       (optional if reloading an existing index, but must match)
     - alphabet - no longer used, leave as None.
     - key_function - Optional callback function which when given a
       SeqRecord identifier string should return a unique
       key for the dictionary.

    This indexing function will return a dictionary like object, giving the
    SeqRecord objects as values:

    >>> from Bio import SeqIO
    >>> files = ["GenBank/NC_000932.faa", "GenBank/NC_005816.faa"]
    >>> def get_gi(name):
    ...     parts = name.split("|")
    ...     i = parts.index("gi")
    ...     assert i != -1
    ...     return parts[i+1]
    >>> idx_name = ":memory:" #use an in memory SQLite DB for this test
    >>> records = SeqIO.index_db(idx_name, files, "fasta", key_function=get_gi)
    >>> len(records)
    95
    >>> records["7525076"].description
    'gi|7525076|ref|NP_051101.1| Ycf2 [Arabidopsis thaliana]'
    >>> records["45478717"].description
    'gi|45478717|ref|NP_995572.1| pesticin [Yersinia pestis biovar Microtus str. 91001]'
    >>> records.close()

    In this example the two files contain 85 and 10 records respectively.

    BGZF compressed files are supported, and detected automatically. Ordinary
    GZIP compressed files are not supported.

    See Also: Bio.SeqIO.index() and Bio.SeqIO.to_dict(), and the Python module
    glob which is useful for building lists of files.

    r   fspathc                    s$   z |  W dS  t y   Y dS w )z3Test if the given object can be accepted as a path.TF)rJ   )objr~   r^   r_   is_pathlike  s   zindex_db.<locals>.is_pathlikez=Need a string or path-like object for filename (not a handle)NzKNeed a list of filenames (as strings or path-like objects), or one filenamer?   rA   rB   r`   )_SQLiteManySeqFilesDictr   rt   z<SeqIO.index_db(%r, filenames=%r, format=%r, key_function=%r)c                    s   |r	 |  || S |  v S )zAGiven a filename returns proxy object, else boolean if format OK.r^   )r;   ry   rt   r^   r_   proxy_factory  s   zindex_db.<locals>.proxy_factoryra   )osr   rJ   rH   rM   rI   rL   rK   rv   r   rw   ru   )	index_filename	filenamesr;   rf   ro   r   r   r{   r   r^   )ru   r   r_   index_db  s8   1	r   )r%   r   )r#   r   )r"   r   )r,   r   )r-   r   )r.   r   )r/   r   )r,   r5   )r-   r5   )r.   r5   )r/   r5   )r,   r,   )r-   r,   )r.   r,   )r/   r,   )r,   r-   )r-   r-   ))r.   r-   )r/   r-   )r,   r.   )r-   r.   )r.   r.   )r/   r.   )r,   r/   )r-   r/   )r.   r/   )r/   r/   )r,   r0   )r-   r0   )r.   r0   )r/   r0   c                    s    r"t  tstd d v sd v sd v rntd t||f}|r2|| |}|S t| |} rH fddfdd	|D }t|||}|S )
a  Convert between two sequence file formats, return number of records.

    Arguments:
     - in_file - an input handle or filename
     - in_format - input file format, lower case string
     - out_file - an output handle or filename
     - out_format - output file format, lower case string
     - molecule_type - optional molecule type to apply, string containing
       "DNA", "RNA" or "protein".

    **NOTE** - If you provide an output filename, it will be opened which will
    overwrite any existing file without warning.

    The idea here is that while doing this will work::

        from Bio import SeqIO
        records = SeqIO.parse(in_handle, in_format)
        count = SeqIO.write(records, out_handle, out_format)

    it is shorter to write::

        from Bio import SeqIO
        count = SeqIO.convert(in_handle, in_format, out_handle, out_format)

    Also, Bio.SeqIO.convert is faster for some conversions as it can make some
    optimisations.

    For example, going from a filename to a handle:

    >>> from Bio import SeqIO
    >>> from io import StringIO
    >>> handle = StringIO("")
    >>> SeqIO.convert("Quality/example.fastq", "fastq", handle, "fasta")
    3
    >>> print(handle.getvalue())
    >EAS54_6_R1_2_1_413_324
    CCCTTCTTGTCTTCAGCGTTTCTCC
    >EAS54_6_R1_2_1_540_792
    TTGGCAGGCCAAGGCCGATGGATCA
    >EAS54_6_R1_2_1_443_348
    GTTGCTTCTGGCGTGGGTGGGGGGG
    <BLANKLINE>

    Note some formats like SeqXML require you to specify the molecule type
    when it cannot be determined by the parser:

    >>> from Bio import SeqIO
    >>> from io import BytesIO
    >>> handle = BytesIO()
    >>> SeqIO.convert("Quality/example.fastq", "fastq", handle, "seqxml", "DNA")
    3
    z&Molecule type should be a string, not DNARNAproteinzUnexpected molecule type, c                    s    | j d< | S )zOver-ride molecule in-place.molecule_type)annotations)rZ   )r   r^   r_   	over_ride[  s   
zconvert.<locals>.over_ridec                 3   s    | ]} |V  qd S ra   r^   )rb   _)r   r^   r_   rd   `  s    zconvert.<locals>.<genexpr>)rH   rI   rJ   rK   
_converterrN   re   rO   )in_file	in_formatout_file
out_formatr   frX   recordsr^   )r   r   r_   convert  s$   5


r   __main__)run_doctestra   )NN)NNNN)|__doc__typingr   collections.abcr   r   rv   r   	Bio.SeqIOr   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Bio.SeqRecordr   
Interfacesr   AbiIterator_AbiTrimIteratorAceIteratorFastaIteratorFastaTwoLineIterator
IgIteratorEmblIteratorEmblCdsFeatureIteratorGenBankIteratorGckIteratorGenBankCdsFeatureIteratorGfa1IteratorGfa2IteratorImgtIteratorNibIteratorCifSeqresIteratorCifAtomIteratorPdbAtomIteratorPdbSeqresIteratorPhdIteratorPirIteratorFastqPhredIteratorFastqSolexaIteratorFastqIlluminaIteratorQualPhredIteratorSeqXmlIteratorSffIteratorSnapGeneIterator_SffTrimIteratorSwissIteratorTabIteratorTwoBitIteratorUniprotIteratorXdnaIteratorrV   as_fastaas_fasta_2lineas_tabas_fastqas_fastq_solexaas_fastq_illuminaas_qualr8   dictrI   __annotations__FastaWriterFastaTwoLineWriterGenBankWriter
EmblWriter
ImgtWriter	NibWriter	PhdWriter	PirWriterFastqPhredWriterFastqSolexaWriterFastqIlluminaWriterQualPhredWriterSeqXmlWriter	SffWriter	TabWriter
XdnaWriterrP   rR   rO   re   rk   rr   r}   r   _genbank_convert_fasta_embl_convert_fasta_fastq_convert_fasta_fastq_convert_tab"_fastq_sanger_convert_fastq_sanger"_fastq_solexa_convert_fastq_sanger$_fastq_illumina_convert_fastq_sanger"_fastq_sanger_convert_fastq_solexa"_fastq_solexa_convert_fastq_solexa$_fastq_illumina_convert_fastq_solexa$_fastq_sanger_convert_fastq_illumina$_fastq_solexa_convert_fastq_illumina&_fastq_illumina_convert_fastq_illumina_fastq_sanger_convert_qual_fastq_solexa_convert_qual_fastq_illumina_convert_qualr   r   __name__
Bio._utilsr   r^   r^   r^   r_   <module>   s    w	
 !"#( 	


P
=
5
J 
g	

&
R
